Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
EMBO J ; 43(7): 1187-1213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383863

RESUMO

Histone modifications commonly integrate environmental cues with cellular metabolic outputs by affecting gene expression. However, chromatin modifications such as acetylation do not always correlate with transcription, pointing towards an alternative role of histone modifications in cellular metabolism. Using an approach that integrates mass spectrometry-based histone modification mapping and metabolomics with stable isotope tracers, we demonstrate that elevated lipids in acetyltransferase-depleted hepatocytes result from carbon atoms derived from deacetylation of hyperacetylated histone H4 flowing towards fatty acids. Consistently, enhanced lipid synthesis in acetyltransferase-depleted hepatocytes is dependent on histone deacetylases and acetyl-CoA synthetase ACSS2, but not on the substrate specificity of the acetyltransferases. Furthermore, we show that during diet-induced lipid synthesis the levels of hyperacetylated histone H4 decrease in hepatocytes and in mouse liver. In addition, overexpression of acetyltransferases can reverse diet-induced lipogenesis by blocking lipid droplet accumulation and maintaining the levels of hyperacetylated histone H4. Overall, these findings highlight hyperacetylated histones as a metabolite reservoir that can directly contribute carbon to lipid synthesis, constituting a novel function of chromatin in cellular metabolism.


Assuntos
Carbono , Histonas , Animais , Camundongos , Histonas/metabolismo , Carbono/metabolismo , Lipogênese , Cromatina , Acetiltransferases/metabolismo , Lipídeos , Acetilação , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
2.
Clin. transl. oncol. (Print) ; 25(6): 1594-1605, jun. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-221192

RESUMO

Hepatocellular carcinoma (HCC) is the prevalent form of liver cancer in adults and the fourth most common cause of cancer-related death worldwide. HCC predominantly arises in the context of cirrhosis as a result of chronic liver disease, injury and inflammation. Full-blown HCC has poor prognosis because it is highly aggressive and resistant to therapy. Consequently, interventions that can prevent or restrain HCC emergence from pre-cancerous diseased liver are a desirable strategy. Histone methylation is a dynamic, reversible epigenetic modification involving the addition or removal of methyl groups from lysine, arginine or glutamine residues. Aberrant activity of histone methylation writers, erases and readers has been implicated in several cancer types, including HCC. In this review, we provide an overview of research on the role of histone methylation in pre-cancerous and cancerous HCC published over the last 5 years. In particular, we present the evidence linking environmental factors such as diet, viral infections and carcinogenic agents with dysregulation of histone methylation during liver cancer progression with the aim to highlight future therapeutic possibilities (AU)


Assuntos
Humanos , Adulto , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Histonas/metabolismo , Lesões Pré-Cancerosas , Metilação
3.
J Cell Sci ; 136(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013828

RESUMO

Histone acetylation involves the addition of acetyl groups to specific amino acid residues. This chemical histone modification is broadly divided into two types - acetylation of the amino group found on the side chain of internal lysine residues (lysine acetylation) or acetylation of the α-amino group at the N-terminal amino acid residue (N-terminal acetylation). Although the former modification is considered a classic epigenetic mark, the biological importance of N-terminal acetylation has been mostly overlooked in the past, despite its widespread occurrence and evolutionary conservation. However, recent studies have now conclusively demonstrated that histone N-terminal acetylation impacts important cellular processes, such as controlling gene expression and chromatin function, and thus ultimately affecting biological phenotypes, such as cellular ageing, metabolic rewiring and cancer. In this Review, we provide a summary of the literature, highlighting current knowledge on the function of this modification, as well as allude to open questions we expect to be the focus of future research on histone N-terminal acetylation.


Assuntos
Histonas , Lisina , Histonas/metabolismo , Acetilação , Lisina/metabolismo , Cromatina , Processamento de Proteína Pós-Traducional
4.
Clin Transl Oncol ; 25(6): 1594-1605, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36650321

RESUMO

Hepatocellular carcinoma (HCC) is the prevalent form of liver cancer in adults and the fourth most common cause of cancer-related death worldwide. HCC predominantly arises in the context of cirrhosis as a result of chronic liver disease, injury and inflammation. Full-blown HCC has poor prognosis because it is highly aggressive and resistant to therapy. Consequently, interventions that can prevent or restrain HCC emergence from pre-cancerous diseased liver are a desirable strategy. Histone methylation is a dynamic, reversible epigenetic modification involving the addition or removal of methyl groups from lysine, arginine or glutamine residues. Aberrant activity of histone methylation writers, erases and readers has been implicated in several cancer types, including HCC. In this review, we provide an overview of research on the role of histone methylation in pre-cancerous and cancerous HCC published over the last 5 years. In particular, we present the evidence linking environmental factors such as diet, viral infections and carcinogenic agents with dysregulation of histone methylation during liver cancer progression with the aim to highlight future therapeutic possibilities.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metilação , Histonas/metabolismo
5.
Cell Rep ; 41(7): 111656, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384120

RESUMO

Asymmetric inheritance of cellular content through cell division plays an important role in cell viability and fitness. The dynamics of RNA segregation are so far largely unaddressed. This is partly due to a lack of approaches to follow RNAs over multiple cellular divisions. Here, we establish an approach to quantify RNA dynamics in single cells across several generations in a microfluidics device by tagging RNAs with the diSpinach aptamer. Using S. cerevisiae as a model, we quantitatively characterize intracellular RNA transport from mothers into their buds. Our results suggest that, at cytokinesis, ENO2 diSpinach RNA is preferentially distributed to daughters. This asymmetric RNA segregation depends on the lifespan regulator Sir2 and decreases with increasing replicative age of mothers but does not result from increasing cell size during aging. Overall, our approach opens more opportunities to study RNA dynamics and inheritance in live budding yeast at the single-cell level.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , RNA , Padrões de Herança , Divisão Celular
7.
BMC Biol ; 20(1): 22, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057804

RESUMO

BACKGROUND: Epigenetic regulation relies on the activity of enzymes that use sentinel metabolites as cofactors to modify DNA or histone proteins. Thus, fluctuations in cellular metabolite levels have been reported to affect chromatin modifications. However, whether epigenetic modifiers also affect the levels of these metabolites and thereby impinge on downstream metabolic pathways remains largely unknown. Here, we tested this notion by investigating the function of N-alpha-acetyltransferase 40 (NAA40), the enzyme responsible for N-terminal acetylation of histones H2A and H4, which has been previously implicated with metabolic-associated conditions such as age-dependent hepatic steatosis and calorie-restriction-mediated longevity. RESULTS: Using metabolomic and lipidomic approaches, we found that depletion of NAA40 in murine hepatocytes leads to significant increase in intracellular acetyl-CoA levels, which associates with enhanced lipid synthesis demonstrated by upregulation in de novo lipogenesis genes as well as increased levels of diglycerides and triglycerides. Consistently, the increase in these lipid species coincide with the accumulation of cytoplasmic lipid droplets and impaired insulin signalling indicated by decreased glucose uptake. However, the effect of NAA40 on lipid droplet formation is independent of insulin. In addition, the induction in lipid synthesis is replicated in vivo in the Drosophila melanogaster larval fat body. Finally, supporting our results, we find a strong association of NAA40 expression with insulin sensitivity in obese patients. CONCLUSIONS: Overall, our findings demonstrate that NAA40 affects the levels of cellular acetyl-CoA, thereby impacting lipid synthesis and insulin signalling. This study reveals a novel path through which histone-modifying enzymes influence cellular metabolism with potential implications in metabolic disorders.


Assuntos
Histona Acetiltransferases , Histonas , Acetiltransferase N-Terminal D/metabolismo , Acetilcoenzima A/metabolismo , Animais , Drosophila melanogaster/metabolismo , Epigênese Genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Insulina/metabolismo , Lipídeos , Lipogênese , Camundongos
8.
Oncogene ; 41(4): 571-585, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785778

RESUMO

Aberrant function of epigenetic modifiers plays an important role not only in the progression of cancer but also the development of drug resistance. N-alpha-acetyltransferase 40 (NAA40) is a highly specific epigenetic enzyme catalyzing the transfer of an acetyl moiety at the N-terminal end of histones H4 and H2A. Recent studies have illustrated the essential oncogenic role of NAA40 in various cancer types but its role in chemoresistance remains unclear. Here, using transcriptomic followed by metabolomic analysis in colorectal cancer (CRC) cells, we demonstrate that NAA40 controls key one-carbon metabolic genes and corresponding metabolites. In particular, through its acetyltransferase activity NAA40 regulates the methionine cycle thereby affecting global histone methylation and CRC cell survival. Importantly, NAA40-mediated metabolic rewiring promotes resistance of CRC cells to antimetabolite chemotherapy in vitro and in xenograft models. Specifically, NAA40 stimulates transcription of the one-carbon metabolic gene thymidylate synthase (TYMS), whose product is targeted by 5-fluorouracil (5-FU) and accordingly in primary CRC tumours NAA40 expression associates with TYMS levels and poorer 5-FU response. Mechanistically, NAA40 activates TYMS by preventing enrichment of repressive H2A/H4S1ph at the nuclear periphery. Overall, these findings define a novel regulatory link between epigenetics and cellular metabolism mediated by NAA40, which is harnessed by cancer cells to evade chemotherapy.


Assuntos
Carbono/metabolismo , Histonas/metabolismo , Acetiltransferases N-Terminal/metabolismo , Processamento de Proteína Pós-Traducional/genética , Resistencia a Medicamentos Antineoplásicos , Humanos
9.
Front Oncol ; 11: 691950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150665

RESUMO

Liver hepatocellular carcinoma (LIHC) is a leading cause of cancer-related mortality. In this study we initially interrogated the Cancer Genome Atlas (TCGA) dataset to determine the implication of N-terminal acetyltransferases (NATs), a family of enzymes that modify the N-terminus of the majority of eukaryotic proteins, in LIHC. This examination unveiled NAA40 as the NAT family member with the most prominent upregulation and significant disease prognosis for this cancer. Focusing on this enzyme, which selectively targets histone proteins, we show that its upregulation occurs from early stages of LIHC and is not specifically correlated with any established risk factors such as viral infection, obesity or alcoholic disease. Notably, in silico analysis of TCGA and other LIHC datasets found that expression of this epigenetic enzyme is associated with high proliferating, poorly differentiating and more aggressive LIHC subtypes. In particular, NAA40 upregulation was preferentially linked to mutational or non-mutational P53 functional inactivation. Accordingly, we observed that high NAA40 expression was associated with worse survival specifically in liver cancer patients with inactivated P53. These findings define NAA40 as a NAT with potentially oncogenic functions in LIHC and uncover its prognostic value for aggressive LIHC subtypes.

10.
STAR Protoc ; 1(3): 100228, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377118

RESUMO

The budding yeast Saccharomyces cerevisiae is an excellent model organism to dissect the maintenance and inheritance of phenotypes due to its asymmetric division. This requires following individual cells over time as they go through divisions to define pedigrees. Here, we provide a detailed protocol for collecting and analyzing time-lapse imaging data of yeast cells. The microfluidics protocol can achieve improved time resolution for single-cell tracking to enable characterization of maintenance and inheritance of phenotypes. For complete details on the use and execution of this protocol, please refer to Bheda et al. (2020a).


Assuntos
Rastreamento de Células/métodos , Microfluídica/métodos , Análise de Célula Única/métodos , Divisão Celular , Linhagem da Célula/fisiologia , Fenótipo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem com Lapso de Tempo/métodos
11.
Cancers (Basel) ; 12(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942614

RESUMO

N-terminal acetylation (Nt-Ac) is an abundant eukaryotic protein modification, deposited in humans by one of seven N-terminal acetyltransferase (NAT) complexes composed of a catalytic and potentially auxiliary subunits. The involvement of NATs in cancers is being increasingly recognised, but a systematic cross-tumour assessment is currently lacking. To address this limitation, we conducted here a multi-omic data interrogation for NATs. We found that tumour genomic alterations of NATs or of their protein substrates are generally rare events, with some tumour-specific exceptions. In contrast, altered gene expression of NATs in cancers and their association with patient survival constitute a widespread cancer phenomenon. Examination of dependency screens revealed that (i), besides NAA60 and NAA80 and the NatA paralogues NAA11 and NAA16, the other ten NAT genes were within the top 80th percentile of the most dependent genes (ii); NATs act through distinct biological processes. NAA40 (NatD) emerged as a NAT with particularly interesting cancer biology and therapeutic potential, especially in liver cancer where a novel oncogenic role was supported by its increased expression in multiple studies and its association with patient survival. In conclusion, this study generated insights and data that will be of great assistance in guiding further research into the function and therapeutic potential of NATs in cancer.

12.
Data Brief ; 31: 105885, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637492

RESUMO

The introduction of methyl groups on arginine residues is catalysed by Protein Arginine Methyltransferases (PRMTs). However, the regulatory mechanisms that dictate the levels of protein arginine methylation within cells are still not completely understood. We employed Synthetic Dosage Lethality (SDL) screening in Saccharomyces cerevisiae, for the identification of putative regulators of arginine methylation mediated by Hmt1 (HnRNP methyltransferase 1), ortholog of human PRMT1. We developed an SDL array of 4548 yeast strains in which each strain contained a single non-essential gene deletion, in combination with a galactose-inducible construct overexpressing wild-type (WT) Hmt1-HZ tagged protein. We identified 129 consistent SDL interactions for WT Hmt1-HZ which represented genes whose deletion displayed significant growth reduction when combined with WT Hmt1 overexpression. To identify among the SDL interactions those that were dependent on the methyltransferase activity of Hmt1, SDL screens were repeated using an array overexpressing a catalytically inactive Hmt1(G68R)-HZ protein. Furthermore, an additional SDL control screen was performed using an array overexpressing only the protein tag HZ (His6-HA-ZZ) to eliminate false-positive SDL interactions. This analysis has led to a dataset of 50 high-confidence SDL interactions of WT Hmt1 which enrich eight Gene Ontology biological process terms. This dataset can be further exploited in biochemical and functional studies to illuminate which of the SDL interactors of Hmt1 correspond to factors implicated in the regulation of Hmt1-mediated arginine methylation and reveal the underlying molecular mechanisms.

13.
Epigenetics Chromatin ; 13(1): 29, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680559

RESUMO

Histone proteins are decorated with numerous post-(PTMs) or co-(CTMs) translational modifications mainly on their unstructured tails, but also on their globular domain. For many decades research on histone modifications has been focused almost solely on the biological role of modifications occurring at the side-chain of internal amino acid residues. In contrast, modifications on the terminal N-alpha amino group of histones-despite being highly abundant and evolutionarily conserved-have been largely overlooked. This oversight has been due to the fact that these marks were being considered inert until recently, serving no regulatory functions. However, during the past few years accumulating evidence has drawn attention towards the importance of chemical marks added at the very N-terminal tip of histones and unveiled their role in key biological processes including aging and carcinogenesis. Further elucidation of the molecular mechanisms through which these modifications are regulated and by which they act to influence chromatin dynamics and DNA-based processes like transcription is expected to enlighten our understanding of their emerging role in controlling cellular physiology and contribution to human disease. In this review, we clarify the difference between N-alpha terminal (Nt) and internal (In) histone modifications; provide an overview of the different types of known histone Nt-marks and the associated histone N-terminal transferases (NTTs); and explore how they function to shape gene expression, chromatin architecture and cellular phenotypes.


Assuntos
Código das Histonas , Histonas/metabolismo , Animais , Epigênese Genética , Histonas/química , Humanos , Domínios Proteicos , Processamento de Proteína Pós-Traducional
14.
Curr Genet ; 66(6): 1029-1035, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32686056

RESUMO

Transcriptional reinduction memory is a phenomenon whereby cells "remember" their transcriptional response to a previous stimulus such that subsequent encounters with the same stimulus can result in altered gene expression kinetics. Chromatin structure is thought to play a role in certain transcriptional memory mechanisms, leading to questions as to whether and how memory can be actively maintained and inherited to progeny through cell division. Here we summarize efforts towards dissecting chromatin-based transcriptional memory inheritance of GAL genes in Saccharomyces cerevisiae. We focus on methods and analyses of GAL (as well as MAL and INO) memory in single cells and discuss the challenges in unraveling the underlying mechanisms in yeast and higher eukaryotes.


Assuntos
Galactoquinase/genética , Galactose/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Cromatina/genética , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única , Açúcares/metabolismo
15.
Mol Cell ; 78(5): 915-925.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32392469

RESUMO

Transcriptional memory of gene expression enables adaptation to repeated stimuli across many organisms. However, the regulation and heritability of transcriptional memory in single cells and through divisions remains poorly understood. Here, we combined microfluidics with single-cell live imaging to monitor Saccharomyces cerevisiae galactokinase 1 (GAL1) expression over multiple generations. By applying pedigree analysis, we dissected and quantified the maintenance and inheritance of transcriptional reinduction memory in individual cells through multiple divisions. We systematically screened for loss- and gain-of-memory knockouts to identify memory regulators in thousands of single cells. We identified new loss-of-memory mutants, which affect memory inheritance into progeny. We also unveiled a gain-of-memory mutant, elp6Δ, and suggest that this new phenotype can be mediated through decreased histone occupancy at the GAL1 promoter. Our work uncovers principles of maintenance and inheritance of gene expression states and their regulators at the single-cell level.


Assuntos
Galactoquinase/genética , Regulação Fúngica da Expressão Gênica/genética , Transcrição Gênica/genética , Galactose/metabolismo , Expressão Gênica/genética , Genes Fúngicos/genética , Hereditariedade/genética , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos
16.
Cell Death Dis ; 10(3): 236, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858358

RESUMO

N-alpha-acetyltransferase 40 (NAA40) catalyzes the transfer of an acetyl moiety to the alpha-amino group of serine 1 (S1) on histones H4 and H2A. Our previous studies linked NAA40 and its corresponding N-terminal acetylation of histone H4 (N-acH4) to colorectal cancer (CRC). However, the role of NAA40 in CRC development was not investigated. Here, we show that NAA40 protein and mRNA levels are commonly increased in CRC primary tissues compared to non-malignant specimens. Importantly, depletion of NAA40 inhibits cell proliferation and survival of CRC cell lines and increases their sensitivity to 5-Fluorouracil (5-FU) treatment. Moreover, the absence of NAA40 significantly delays the growth of human CRC xenograft tumors. Intriguingly, we found that NAA40 knockdown and loss of N-acH4 reduce the levels of symmetric dimethylation of histone H4 (H4R3me2s) through transcriptional downregulation of protein arginine methyltransferase 5 (PRMT5). NAA40 depletion and subsequent repression of PRMT5 results in altered expression of key oncogenes and tumor suppressor genes leading to inhibition of CRC cell growth. Consistent with this, NAA40 mRNA levels correlate with those of PRMT5 in CRC patient tissues. Taken together, our results establish the oncogenic function of the epigenetic enzyme NAA40 in colon cancer and support its potential as a therapeutic target.


Assuntos
Adenocarcinoma/enzimologia , Neoplasias Colorretais/enzimologia , Acetiltransferase N-Terminal D/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Acetilação , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Histonas/metabolismo , Humanos , Masculino , Metilação , Camundongos , Camundongos Nus , Acetiltransferase N-Terminal D/antagonistas & inibidores , Acetiltransferase N-Terminal D/genética , Proteína-Arginina N-Metiltransferases/genética , Transplante Heterólogo
17.
Front Genet ; 10: 192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915107

RESUMO

Histone modifications are key epigenetic regulators that control chromatin structure and gene transcription, thereby impacting on various important cellular phenotypes. Over the past decade, a growing number of studies have indicated that changes in various histone modifications have a significant influence on the aging process. Furthermore, it has been revealed that the abundance and localization of histone modifications are responsive to various environmental stimuli, such as diet, which can also affect gene expression and lifespan. This supports the notion that histone modifications can serve as a main cellular platform for signal integration. Hence, in this review we focus on the role of histone modifications during aging, report the data indicating that diet affects histone modification levels and explore the idea that histone modifications may function as an intersection through which diet regulates lifespan. A greater understanding of the epigenetic mechanisms that link environmental signals to longevity may provide new strategies for therapeutic intervention in age-related diseases and for promoting healthy aging.

19.
Crit Rev Oncog ; 22(3-4): 195-218, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29604899

RESUMO

Histone acetyltransferases (HATs) catalyzing N-epsilon-lysine or N-alpha-terminal acetylation on histone and non-histone substrates are important epigenetic regulators controlling gene expression and chromatin structure. Deregulation of these enzymes by genetic or epigenetic alterations accompanied by defects in gene transcription have been implicated in oncogenesis. Therefore, these enzymes are considered promising therapeutic targets, offering new horizons for epigenetic cancer therapy. However, recent observations suggest that these enzymes function as both oncogenes and tumor suppressors. In this review, we present the current evidence demonstrating that individual HATs can either prevent cancer cell proliferation or drive malignant transformation depending on the molecular context and cancer type. We therefore advocate that future therapeutic interventions targeted toward these enzymes should carefully consider the fact that HATs commonly have a two-sided role in carcinogenesis.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Histona Acetiltransferases/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Acetilação/efeitos dos fármacos , Animais , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/uso terapêutico , Histonas/metabolismo , Humanos , Neoplasias/tratamento farmacológico
20.
BMC Biol ; 14(1): 106, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927215

RESUMO

BACKGROUND: Transcriptome studies have revealed that many eukaryotic genomes are pervasively transcribed producing numerous long non-coding RNAs (lncRNAs). However, only a few lncRNAs have been ascribed a cellular role thus far, with most regulating the expression of adjacent genes. Even less lncRNAs have been annotated as essential hence implying that the majority may be functionally redundant. Therefore, the function of lncRNAs could be illuminated through systematic analysis of their synthetic genetic interactions (GIs). RESULTS: Here, we employ synthetic genetic array (SGA) in Saccharomyces cerevisiae to identify GIs between long intergenic non-coding RNAs (lincRNAs) and protein-coding genes. We first validate this approach by demonstrating that the telomerase RNA TLC1 displays a GI network that corresponds to its well-described function in telomere length maintenance. We subsequently performed SGA screens on a set of uncharacterised lincRNAs and uncover their connection to diverse cellular processes. One of these lincRNAs, SUT457, exhibits a GI profile associating it to telomere organisation and we consistently demonstrate that SUT457 is required for telomeric overhang homeostasis through an Exo1-dependent pathway. Furthermore, the GI profile of SUT457 is distinct from that of its neighbouring genes suggesting a function independent to its genomic location. Accordingly, we show that ectopic expression of this lincRNA suppresses telomeric overhang accumulation in sut457Δ cells assigning a trans-acting role for SUT457 in telomere biology. CONCLUSIONS: Overall, our work proposes that systematic application of this genetic approach could determine the functional significance of individual lncRNAs in yeast and other complex organisms.


Assuntos
Genoma Fúngico , RNA Longo não Codificante/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telômero/genética , DNA Fúngico/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Genômica , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...